
 

 

  
Abstract— Time-delay systems with constant or variable delays 

can take the form of delay differential equations (DDEs) from a 
mathematical point of view. DDEs combine the continuous aspect of 
differential equations and sample features of difference equations. 
Such “mixed difference equations” go back to the astronomer’s three-
body problem of Condorcet in 1767. R.E. Bellman & K.L. Cooke 
published a seminal study on DDEs in the 1960’s. Russian 
mathematician Komanovskii, Myshlis & Nosov (1999) developed the 
study of their stability and applications to the industrial problems. 
Mathematical software packages like Mathematica® and MATLAB® 
introduced solvers recently for DDEs with constant delays. DDEs are 
essential for modeling, forecasting, and simulation of complex real-
life systems for which delays cannot be neglected. Time-delay 
systems are applied extensively in various domains of science and 
industry such as mechanical systems, electrical systems, industrial 
processes, and biological systems. Some delays are due to inherent 
properties of a system where the propagation of effects takes time. 
The necessity of feedback controls to stabilize a system also 
introduce some inevitable delays. This study introduces this modeling 
process and analysis using some real-life deterministic applications 
from mechanical engineering dynamics and control such as with the 
metal rolling system and machine tool chatter. 
 

Keywords—Block diagram, delay differential equation, 
mechanical application, transcendental characteristic equation.  

I. INTRODUCTION 
HIS introduction is devoted to an initial general 
formulation of delay differential equations. A standard 
example illustrates the differences accounted between an 

ordinary differential equation (ODE) and a corresponding 
hybrid difference-differential equation (DDE). After that, we 
present a short history of DDEs in the literature. Finally, we 
mention the numerous scientific domains in which DDEs can 
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be used such as in physics, engineering, chemistry, biology, 
economics for modeling complex real-life systems. 

A. Formulation of Delay Differential Systems 
We proposed here a general mathematical formulation. 

Delay differential equations belong to a class of functional 
differential equations between ordinary differential equations 
(ODEs) and partial differential equations (PDEs). More 
specifically, DDEs combine the continuous aspects of ODEs 
with sample features of difference equations with advanced or 
retarded delays. In the simple case of one state variable with   
constant delays, we can write 
.                                                          

( ) ( ) ( ) ( )( )1, , , , mx t f t x t x t x tτ τ= − −
         (1)                                                                        

where    ( ) ( ) /x t dx t dt= . Variable delays in (1) should be 

such as ( )( ) { }, , 1, 2, ,i i t x t i mτ φ= ∈  . In matrix form, 
we may have 

( ) ( ) ( )( ), , , nt t t tτ= ∈x f x x x              (2)                                                           

where [ ]( )1 1 1: , 0, ,n nC C C τ× × =f     . The delayed 

state vector in (2)  is such that ( ) ( ){ }:t t tτ τ= ≥x x . 
 

B. Transcendental Characteristic Equation 
A simple comparison between ODEs and DDEs is 

proposed [1] by using a simple standard example. A one-
dimensional scalar linear ODE is used. The corresponding 
DDE delays merely the state variable by a positive fixed time 
delay. Let the one-dimensional scalar linear ODE 

                                                                      

( ) ( ) , 0x t x tµ µ= − ≠                   (3)                                                                     

Using (3) with a fixed delay 0τ >  yields the corresponding 
DDE 
                                                                         

( ) ( ) , 0x t x t tµ τ= − − ≥                  (4)                                                                
Solutions of ODEs are finite-dimensional and do not 

depend on the history. Solutions of DDEs are infinite-
dimensional and strongly depend on the history. More 
specifically, the ODE in (3) has the algebraic characteristic 
equation 
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0,ODE z zµ∆ ≡ + = ∈                  (5)                                                                          

and requires an initial value. Eq. (5) is obtained by assuming 
the candidate function ( ) ztx t Ce=  and has one eigenvalue 

z µ= − . DDE in (4) has the transcendental characteristic 
equation 
                                                                          

0z
DDE s e τµ −∆ ≡ + =                       (6)                                                                        

and requires an initial continuous function on [ ],0τ−  . Eq. 
(6) has an infinite number of eigenvalues. The eigenvalues are 

defined by 
( )ProductLog

z
µτ

τ
−

=  where 

( )ProductLog z  gives the principal solution for w  in 
wz we=  . 

.  

C. History of Time-Delay Systems 
A short history of delay differential equations was 

proposed by [2], pp. i-iv.  Such mixed (or hybrid) equations 
were early studied by S.-D. Poisson (1781-1840) in his 
Memorandum “Essay on the mixed difference equations” 
(transl.) in 1806 [3]. We can also refer to J.B. Biot in 1806 
who presented a talk “About the mixed difference equations” 
(transl.), in the French Institut des Sciences, Lettres et Arts par 
divers Savants [4]. S.-D. Poisson also published on the 
particular solutions of the differential and difference equations 
[5]. We could also quote the book S.F. Lacroix on “mixed 
difference equations” in 1819 [6]. However, the origin of such 
mixed equations was attributed to Condorcet in 1767 in the 
context of the astronomer’s three-body problem. This problem 
is to determine the motions of three point masses which attract 
each other according to Newton’s law (see online, the article 
by Chenciner  [7] for a detailed numerical introduction). 

 The equations may not be autonomous and contain a vector 
of control variables. Delays may be placed on the state 
variables and their derivatives in the case of neutral forms. 
Moreover, the scalar integro-differential-difference equations 
(IDDEs) of the population models involve distributed time-
delays. In such equations, the motion is not only explained by 
the position and velocity of a given physical particle but also 
all the history of the prior states. The motion equation will be 
determined not only by the initial point condition but on an 
integrable function defined on the pre-interval just before the 
motion.  In the 1960’s, Bellman and Cooke published a 
seminal study on the DDEs [8], [9]. The Russian 
mathematicians Kolmanovskii, Myshkis and Nosov [10]-[12] 
also contributed to the study of DDEs’ stability and 
applications to industrial problems. More recently, the 
presence of algebraic constraints on the state or boundary 
conditions results in delay differential algebraic equations 
(DDAEs). Deshmukh (2010) [13] studied the stability of 
solutions of nonlinear DDAE with time periodic coefficients in 
mechanical engineering. 

D. Applications of Time-Delay Systems 
DDEs are used in numerous scientific domains in physics, 

engineering, chemistry, biology, economics for modeling, 
forecasting and simulating. Backer et al. (1999) [14], 
Bocharov and Rihan (2000) [15] investigated DDEs in 
biosciences, that is in population dynamics. Kolmanovski and 
Myshkis (1999) report applications in medicine [12] pp. 71-80 
(e.g., arterial blood pressure regulation, cancer chemotherapy, 
a model of survival of red blood cells, regulation of glucose-
insulin system, human respiratory system epidemiology, 
epidemiology, immunology, cell kinetics notably. This study is 
focused on mechanical engineering with applications in cutting 
and milling processes. In such models, we distinguish two 
essential pieces, the workpiece, and the cutting inserts. In 
cutting machines, the workpiece rotates, and the cutting inserts 
are fixed. On the contrary in the milling machines, the 
workpiece is fixed, and the cutting inserts are rotating on an 
axis. The time-delay corresponds to the time of one complete 
revolution of the workpiece or cutting inserts [16]. This 
substantial diffusion of applications with DDEs is also due to 
the inherent properties of a system and necessary feedback 
control to stabilize it. An inherent property of a system is that 
propagation of effects takes time to process. Feedback controls 
take into account delays between the observation of 
discrepancies and the introduction of effective controls. 

II. TIME-DELAY SYSTEM MODELING 
We provide some basic types of delays such as internal 

delays and control or loop delays. Different types of time-
delay systems result from the comparison between the order of 
the derivatives and the maximal order at shifted arguments. 
We deduce retarded types, neutral types, and leading types. A 
TD system can also be characterized by time-varying 
coefficients and delays. There is also a distinction between 
time-continuous TD systems and time-discrete or digital TD 
systems. A system can be described as a set of inputs or 
control variables, a set of outputs, and a collection of 
information containing the history. The state-space 
representation consists of two equations, a state equation, and 
an observation equation.  

A. Types of Delays 
Delays can be neglected if they have no critical effects on 

the analysis or design of a system. Otherwise, delays have to 
be taken in the modeling process such as in metallurgical 
processing system, chemical systems, power system, 
transportation and communication, and environmental system.  

Delays intervene between the application of input or 
control and the resulting output. There are two main categories 
of delays, internal delays and control delays. Internal delays 
are inherent to the system. Control or loop delays are 
introduced for control and correction purposes. Thus, in the 
steel rolling example in mechanical engineering, the thickness 
of metal sheets is measured at some distance from the rolls 
resulting in a measurement delay. 
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Delays may be fixed-time (or discrete time or stationary) or 
time-varying (or nonstationary). Delay can be certain or 
uncertain. In the stochastic approach, parameters may fluctuate 
due to the internal reasons and to a noisy environment. We 
recall that in cutting and milling machines, the time-delay 
represents the time taken for one complete revolution of the 
workpiece (cutting machines) or cutting inserts (milling). 
Parameters determine the amplitude and frequency of the delay 
variation. 

B   Types of Time-Delay Systems 
Let a DDE in the general form be written in matrix form as 

                      
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1
1

0

, , , , ,

, , ,

(
)

n

m
m

nt f t t t t

t t tτ τ τ

−=

− − −

x x x x

x x x



                
  (7)                            

where N∈x   denotes the state vector of finite dimension. 

The expression ( ) ( )k k kt d dt=x x /   in (7) is the kth 
derivative evaluated at t. The order of the derivative on the 
LHS is n . The maximal order at shifted arguments is m . 
A retarded type is obtained if 0 m n≤ <  . A neutral type is 
represented for m n= . A leading type supposes that m n>  . 
    An example can be the scalar DDE 

( ) ( )( ),x f x t x t τ= −  for which 1N n= =   and 0m =  
. In the Hutchinson’s population model (1948), the population 
loop is controlled by a delayed retroaction loop. Denote the 
intrinsic growth rate by r  , the carrying capacity by K  , and 
the time-delay by the constant τ  . By Hutchinson, we have the 
delayed logistic equation  
                                                                       

( ) ( ) ( )1
x t

x t r x t
K

τ− 
= − 

 
              (8)                                                                    

This model is also known as a Verhulst-Pearl retarded logistic 
equation (see Keller [2] pp. 30-33 and Hutchinson (1948) 
[17]).  The transcendental characteristic equation for (8) is 

( ) 1 0
tCeD z z r

K

τ− 
≡ + − = 

 
                      (9)  

and the solutions of (9) are 

 

( ) ( )ProductLog
r tCe r t

K
z r

t

τ τ

τ

− −
  
 = −

−
   

  
Michiels et al. (2007) [16] proposed a generalized linear 

time-varying delay of the form 
 

                                         

( ) ( ) ( ) ( ) ( )( )
( ) ( )0

,t t t t t

f

t

t t

ω ω

τ τ δ

τ+ −

= + Ω

x = A x B x  
  (10)                                           

In (10), we have n∈x   and suppose that  

, : n n×A B    are 2π - periodic functions and that 

[ ]: 1,1f −   is also a 2π - periodic function ns. 

Furthermore, we have 0, , ,δ τ ω ++Ω∈   and 0δ τ≤  . The 
two examples from mechanical engineering proposed by the 
authors are a model of a variable speed rotating cutting tool, 
and a model of an elastic column subjected to a periodic force 
[16]. 

We must also distinguish time-continuous (or analog) TD 
systems and time-discrete (or digital) TD system. Dynamic 
equations are the same except that the first-order derivative in 
the analog version is replaced by an advance by one sampling 
period, that is x  is replaced by ( )1k +x . 

C   State-Space Representation 
In a system, we find a set of inputs (or control variables) 

( )1 2
T

ru u u=u   , a set of outputs  ( )1 2
T

my y y=y    
and a collection of information containing the history. The 
inputs and the outputs are related by the dynamic equations of 
the system. If 1r m= =  the system is called SISO (single-
input single-output). If 1r >  and/or 1m >  , the system is 
called MIMO (i.e., multi-input multi-output). 

The equivalent state-space representation of an invariant 
analog TD system consists of two matrix-equations, that is a 
state-equation and an observation-equation, so that 

( ) ( ) ( )
( ) ( )
t t t

t t

τ= + −


=

x Ax Bu

y Cx



               (11) 

                                                                                                                                           
where A  denotes the state matrix, B  the input matrix, and 
C  the output matrix of (11). A more general analog time-
invariant TD system should be 
                                         

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( )

1

1

1

1

n

i i
i
r

j j
j

n

i i
i

r

j j
j

t t t t

t

t t t t

t

τ

θ

τ

θ

=

=

=

=

 + −



+ −


 = + −


 + −

∑

∑

∑

∑

x = Ax A x + Bu

B u

y Cx C x + Du

D u



                  

                      

          (12)                                          

where matrices of coefficients express direct transmissions in 
(12) .              

 

III. DYNAMICS, STABILITY AND CONTROL 
Problems studied by using deterministic and stochastic TD 

systems are common, dynamics, stability and control. 
Dynamics uses time and frequency representations. Stability 
analysis uses stability checking techniques such as the 
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characteristic equation and usual stability criteria (e.g., root 
locus criterion, Nyquist criterion). Control analysis) (i.e., 
controllability and observability) refers to problems like H∞  
control and filtering. 

A   Transfer Function 
Laplace Transform (LT) converts time-domains into 

frequency-domain functions. The consequence of this 
transformation is that differential equations are transformed 
into algebraic equations that make solving easier. The 
solutions of the algebraic approach are then transferred into 
the time domain. LT of function ( )f t  is                                                           

( ) ( ) ( )stf t e f t dt F s
∞

−

−∞

= ≡   ∫L                (13)                                                          

where s   denotes the Laplace operator. Let the state space 
representation of a delayed SISO system be   
                                                             

( ) ( ) ( ) ( )
( ) ( ) ( )

1t t t Bu t

y t t Du t

τ= + − +


= +

x Ax A x

Cx



            (14)                                                    

Taking LT of (14) by using (13)  for initial states yields 
                                                      

( ) ( ) ( ) ( )
( ) ( ) ( )

1
stsX s X s X s e BU s

Y s X s DU s

− = + +


= +

A A

C
   (15)                                                       

From (15) we deduce the transfer function  
                                                              

( ) ( )1
stH s s e B D−= − − +C I A A                                                                          

where   ( ) ( ) ( )/H s Y s U s= . 

B   Lambert Function-Based Method 
This method is used to solve analytically the transcendental 

characteristic equation of DDEs as in sections I-B and II-B. 
Let the boundary-value problem of the Frisch-Holme 
prototype [18] 
                                                                 

( ) ( ) ( )
( ) ( ) [ ]

, 0

, 0,

y t ay t by t

y t t t

τ τ

φ τ

 = − − − >


= ∈

  
 

                (16)                                                         

where a   and b  are positive coefficients. This model 
illustrates a cell population growth [15]. It can be shown that 
the lag value produces instability. 

Assuming the candidate function ( ) zty t Ce=  , we deduce 
from (16)  the transcendental characteristic equation [19],[2] 
pp. 47-49.  
                                                                     

( ) ( ) zD z a z e bτ≡ + = −             (17)                                                      

Multiplying both sides of  (17)  by ae ττ  , we get 

( ) ( )a z aa z e b eτ ττ τ++ = −                  (18)      
According to the definition of a Lambert function for which 

                                                                                , 

( ) ( )W sW s e s=   , we may also write 

( ) ( )aW b ea aW b e e b e
τττ ττ τ

−
− = −                   (19)  

  Comparing (18)  and (19), we deduce the roots 

( )1 az W b e aττ
τ

= − −                                                                         

The roots of the Frisch-Holme characteristic equation are 
shown in Fig.1 in the complex plane. 

 
Fig.1 roots of the transcendental characteristic equation of 
Frisch-Holme prototype for coefficients 1a =  , 2b =  and 

1τ =  

C   Asymptotic Behavior of Time-Delay Systems 
The asymptotic behavior of DDEs may involve oscillatory 

solutions that do not appear without delay. The delay may be 
destabilizing with possible stability regimes. We study the 
dynamics of the logistic delay prototype (8) for different 
values of the intrinsic growth rate (or Malthus’ coefficient r  
and of the delay τ  .By using the variable changing 

( ) 1 tx t K y
τ

  = +     
, we obtain the equivalent Wright 

form [20]   by means of some simple algebraic manipulations 

( ) ( )( ) ( )1 1x t r x t x tτ= − + −                (20)  

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 12, 2018

ISSN: 1998-0159 67



 

 

Using (20), Fig. 2 and Fig. 3 illustrate the dynamics in 
interactive objects from Mathematica ® software. These 
objects contain controls (sliders) for different parameter 
values. These interactive applications let explore ranges of 
coefficient values, delays, and initial conditions. The 
consequences on the results of such changes are observed 
immediately. Fig. 2 shows an oscillatory convergence to the 
origin in the phase space ( ),x xτ  for an intrinsic growth rate 

of 1r =   and a unit delay. 

 
Fig. 2 logistics DDE dynamics for 1r τ= = . 

Fig. 3 shows an oscillatory convergence to a limit cycle in 
the phase space ( ),x xτ  for  1r =   and 2τ =  

 
 

 
Fig. 3 logistics DDE dynamics for 2r =   and 1τ =   
 

D   Stability Checking Techniques 
Criteria like Ruth-Hurwitz for non-delay systems will not 

operate. Using the Neimar D-partition can be exhibited in the 
parameter space. Frequency response tools like Bode plots, 
Nyquist and Nichols's plots contribute to LTI system analysis.  

The Neymar D-partition is retained here for this 
presentation [12] pp. 236-240 and [2] pp. 199-202. This 
technique is adequate to the study of the stability of the DDE 
Frisch-Holme prototype (16).  

The transcendental characteristic equation for this model in 
(17) can be rewritten as 

( ) 0zD z a z be τ≡ + + =  ,               (21)  

where , 1z j jσ ω= + = −  . Putting the expression of z  
into (21) , separating the real and imaginary parts  and solving 
in a   and b   for a constant delay τ  , we get the parametric 
for equations defined by  

( )
( )1

cot

sin

a

b eστ

σ ω ωτ

ω ωτ−

= − −


=
                (22) 

 
We are searching for ( ),a b  - values for which ( ) 0D z =  . 

Taking the pure imaginary z jω= , the boundaries of regions 
are formed of the straight line 0a b+ =  and curves defined 
parametrically by (22) with 0σ =  , that is  

( )cota ω ωτ= −   and ( )1sinb ω ωτ−= .  Fig.  4  shows a 

stability region 0Γ  in which the characteristic roots of the 
transcendental function are negative.  
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Fig.  4 D-partition of the parameter space ( ),a b   for a 
standard scalar Frisch-Holme type DDE [adapted from Keller 
(2011), p.220 (©LAP Lambert Academic Press)] 

E   Controllability and observability 
 

The attributes controllability and observability characterize 
the control system. Controllability attribute characterizes the 
relationship between the input and the state. The problem of 
controllability is to know if a control ( )u t   always exists 
from an initial state to any other state in a finite time. 
Observability attribute characterizes the relationship between 
the state and the output. The problem is to know if the initial 
state can always be identified by observing the output and the 
input of the system.  

Let the general linear MIMO TD system 

( ) ( ) ( ) ( )

( ) ( ) ( )

1

1

N

i i
i

N

i i
i

t t t t

t t t

τ

τ

=

=

 + − +

 + − +


∑

∑

x = Ax A x Bu

y = Cx C x Du



     (23) 

The invariant matrices of coefficients 1 2, , , , ,NA A A A B  
will have to characterize the controllability whereas the 
invariant matrices of coefficients 1 2, , , , ,NC C C C D  will 
have to characterize the observability. 

1) Controllability Criterion 
 

Theorem. Let a state equation 

( ) ( ) ( ) ( )1t t t tτ= + − +x Ax A x Bu  where N∈x    and 
m∈u  . The system is controllable to the origin if a matrix 

Q  has rank N . 

Matrix Q  is the concatenation  
1 2 2 3 3 3
1 1 2 1 2 3 =  Q Q B | Q B | Q B | Q B | Q B | Q B        

for which the calculation rules are: 
(i) 1

1 =Q I , 

(ii) for ork
j j = 0 j > k=Q 0    , 

(iii) 1
1 1

r r r
j j j
+

−= +Q AQ A Q . 
Example (Malek-Zavarei and Jamshidi, 1987 [21], p.139). We 
suppose the coefficient matrices 
 

1

0 0 1 0 0 2 0
1 0 2 , 0 0 1 , 0
0 1 3 0 0 4 1

− −     
     = =     
     − −     

A A B =   . 

We use the rules:  (i) 1
1 =Q I  , (ii), and (iii) 

( ) ( )2 23 3 3
1 2 1 1 1 1, , .= = + =Q A Q AA A A Q A   We deduce 

0 1 2 3 10 8
0 2 1 7 13 4
1 3 4 11 25 16

− − 
 = − − − 
 − − 

Q . In this example, the 

system is controllable to the origin since ( )rank 3=Q . 
2) Observability Criterion  

 
Let a system with time-varying coefficients 

 
                                                                 

( ) ( ) ( ) ( ) ( )
( ) ( )

1 1t t t t t

y t t

= + −


=

x A x A x

Cx



          (24) 

                                                     

where ( ) ( )
0 1 0 0
2 1

t , t
t t

   
= =   − − − −   

A A  , and 

( )1 0C =  . The observability matrix of (24) is expressed 

by ( ) ( ) ( )( )1
T T Tt t t = ∗ P I A A C  . For this 

example (Malek-Zavarei and Jamshidi, 1987 [21], p.148), the 

observability matrix takes the form  ( )
1 0 0
0 1 0

t  
=  

 
P  . 

We conclude that the TD system is observable for 0t ≥  . 

IV. APPLICATION TO MECHANICAL ENGINEERING 
DDE systems have been developed in industrial areas. We 

will give some details about the diversity of these applications 
and will focus the detailed presentation on two standard well-
known mechanical systems namely the metal rolling system 
and the machine tool chatter problems. 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 12, 2018

ISSN: 1998-0159 69



 

 

A. Industrial Applications of Time-Delay Systems 
Industrial applications of time-delay systems are multiple 

and diverse. DDE systems can be found in physics, 
engineering (e.g., aerospace, robotics, mechanical systems, 
electrical systems, manufacturing, metallurgical systems), 
chemistry, bioscience (e.g., population dynamics), medicine 
(e.g., epidemiology, immunology, cell kinetics), water 
resources (e.g., hydraulic control), communications (e.g., 
traffic control, transport process), computerized systems. 

This presentation is devoted to the stability and control of 
mechanical systems. Mechanical engineering can be 
represented by fixed or time-varying nonlinear TD systems. 
We may also have algebraic boundary conditions as with time 
periodic DDAEs (i.e., delay-differential-algebraic equations). 
Boukas and Liu (2002) [22]   studied three applications: (1) A 
rolling system, 2) a heating system, and (3) a controlled 
feeding of the production system. Michiels et al. [16]  
proposed two mechanical applications: (1) a variable speed 
rotating cutting tool and (2) an elastic column subjected to a 
periodic force.  
This presentation focuses on the description and analysis of 
two mechanical engineering applications with milling and 
cutting machines, i.e., (1) Metal rolling system and (2) 
Machine tool chatter. We describe the model for each 
application, show the dynamic equation, the equivalent 
representations. Elements of stability analysis are shown in 
application 2. 

B. Mechanical Application 1: Metal Rolling System  
In metal rolling system, ribbons of hot metal sheets run 

though rollers as in Fig.  5. The goal is to produce metal sheets 
of a given thickness by controlling the upper roller, whereas 
the lower one is fixed. A drive motor is used to operate this 
adjustment. The sensor thickness is placed downstream at a 
distance d   of the rollers. The ribbon is fed at speed v  into 
the system [22] pp. 4-6, [23]. 

 
Fig.  5 metal rolling system [adapted from Mirkin [23]] 

 
The delay depends on both distance and speed, such that 

/d vτ =  . The measured thickness is ( )y t τ−  , the real 

thickness ( )y t , and desired thickness be denoted by ( )dy t  . 
We obtain the DDE 
                                                       

( ) ( ) ( )p m p m dy t k k y t k k y tτ+ − =             (25)                                                  

where pk   and mk  are gains of proportional controller in (25) 
. The state-space representation of the metal rolling system is 

( ) ( ) ( ) ( )
( ) ( )

0, 0dx t A x t Bu t x x

y t x t

τ= − + =


=

   
                  (26)                                           

where pk   and mk   are gains of proportional controllers.  
The block diagram of this metal rolling system in (26) is 

represented by Fig.  6. Suppose that the transfer function 
between the upper roller position and the input voltage of the 
driver motor is ( ) /mG s k s=  . The transfer function of the 

used controller is ( ) /pC s k s=  . The transfer function of 

the censor is ( ) sH s e τ−= . The effect of the external 

disturbances on the system is denoted by ( )P s .Suppose that 

( )G s  is given by  

( ) ( )1
mkG s

s Ts
=

+
                     

           
We get the following second-order DDE [22] p.6 
 

( ) ( ) ( ) ( )p m p m dy t y t k k y t k k y tτ+ + − =  . 
 

 
Fig.  6 block diagram of the metel rolling system [adapted 
from Boukas and Liu (2002) Figure 1.2, p. 6] 

 

C. Mechanical Application 2: Machine Tool Chatter 
Machining processes like turning, milling, and drilling can 

be disturbed by vibrations produced by coupling between a 
machine tool and the cutting forces. Vibrations result in waves 
on the machine surface. In this study, a machine tool removing 
a chip is deviated from its steady-state cutting by a small 
vibration ( )x t  between the machine tool and a workpiece as 

in Fig.  7. Dynamic forces ( )P t  act between the machine tool 
and the workpiece, as in Fig. 7. The goal  is to analyze the 
machine tool stability by using a method based on the 
feedback control theory [24]. Fig.  7(a) shows the positions of 
the workpiece, the tool,, and chip. It also indicates the fee 
direction. Fig.  7(b) shows how forces are acting in the system. 
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Fig.  7 Regenerative chatter in metal cutting [taken fron Mirkin 
(2012) [23]] 

 
The machining process model shows a closed loop 

interaction between two blocks, a cutting process sub-model, 
and a structural dynamics sub-model. Deflections ( )tx  result 

from the action of cutting forces ( )F t  on the structural 
dynamics submodel. These deflections, in turn, modulate the 
cutting forces [16][24]-[25]. . 

The dynamic equation results from the combination of the 
cutting process and the structural dynamics. A   cutting force 
equation can be expressed by  
                                                  

( ) ( )( ) ( )( )F t k f x t t x t dφ= + − −         (27)                                           

where  k  denotes a cutting force coefficient, f   a nominal 
feed rate,  d  a nominal depth of cut, and where the colored 
expression is a regeneration term which modulates the cutting 
force. The model of structural dynamics computes the 
deflection of the machine tool structure resulting from the 
cutting forces. Using the transfer function approach, we have 
                                                       

( ) ( )
( ) 2 2

1/
2

X s mG s
F s s sξω ω

= =
+ +

          (28)                                                 

The dynamic equation results from (27)-(28). We have the 
typical second-order DDE 

  ( ) ( ) ( ) ( ) ( )( )( )22 ,kx t x t x t x t t x t
m

ξω ω φ+ + = − −                                                   

where ξ   denotes the damping ratio, ω  the frequency, and 
m   the modal mass. 

The system consists of three blocks: the machine tool 
structure, the chip thickness modulation, and the cutting 
process. Each of them represents a transfer function with 
inputs and outputs. The input of the machine tool block is the 
force F   and the output is the relative displacement x  . The 

transfer function is ( )G s   or the corresponding frequency  

function ( ) jG j Me φω =   in complex polar form with usual 
notations. The chip thickness modulation is expressed by 

( ) ( ) ( )t x t x t Tδ µ= − − . The  response function is 

( )1 1 j TH j e ωω µ −= −  . The frequency response function of 

the cutting process is ( )2
jH j Ke ωω =  . The block diagram 

of the metal cutting system is shown in Fig.  8. 

 
Fig.  8 block diagram of the metal cutting system [adapted 
from Nigm [24] Fig.2, p. 253] 
 
The open-loop frequency response function of the system is 
                                                

( ) ( ) ( ) ( )1 2T j G j H j H jω ω ω ω= × ×          (29)                                   

Eq.(29)     is equivalent to ( ) jT j Ae αω =  with gain 

A MCK=   and phaseα φ ψ θ= + +  .  
Finally, we apply a stability criterion for the frequency at 

which  the open-loop phase is such as  α π=  . The system is 
stable if the gain is  1A < . The system is unstable if 1A > , 
and on the threshold of stability if. 1A =  If 1A = , then  

1/K MC=  . The system is stable if 1/K MC<   and 
unstable if K>1/M. 

V. CONCLUSION 
The challenge of this article was to be an introduction to the 

vast domain of the DDE modeling. Interest for these hybrid 
systems goes back to an ancient times as we showed it in the 
introduction. Block diagram techniques have contributed 
significantly to these developments and the industrial 
applications. The approach is mostly introductory on the whole 
subject without addressing particular points of concern. This 
article is limited to some illustrative techniques without 
addressing them all of course. The field of mechanics is 
privileged, but the presentation is limited to two significant 
examples such as rolling sheet steel and the vibrations of a 
machine cutting tool. 

Other examples relating to mechanics are presented in the 
book by Boukas [26] pp. 14-28 on “Control systems 
engineering” (transl.). These examples are the speed control of 
a conveyor, the flushing system, the positioning servo of a 
parabolic antenna, the control of a ship's rudder, the control of 
the angular position of an airplane rudder. Other specifications 
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on circuit analysis are proposed in different studies of the 
author such as other system representations (e.g., phasor 
representation [27]) , solving methods (Method of Step 
Algorithm MSA, Differential  Transform Methods DTM [28] 
with application to the retarded Kalecki’s business cycle 
model, Solow vintage capital growth model with variable 
delay [29]), stability criteria  besides the root locus criterion 
(e.g., BIBO stability, Lyapunov stability criterion, Nyquist 
stability criterion) with applications to environmental pollution 
systems and fishery environmental systems [27]. 

Other important technical aspects of dynamics and 
control can be addressed such as the assumption of a stochastic 
environment, PID control and fuzzy control. A noisy 
environment can be adapted to describe real-life modeling 
processes of populations. In the papers [29]-[30], populations 
interact, fight or cooperate, in real life conditions with constant 
time-delays in a noisy environment. A typical small delay 
stochastic process can be 

( ) ( ) ( )( ) ( )( ) ( ),dx t f x t x t dt g x t dW tτ σ= − + ,  

where ,f g  are known functions, τ   is a constant time-delay, 

σ   scales the noise amplitude, and  ( )W t  is a Wiener 

process. PID controllers involve three possible coefficients: a 
proportional gain (P) in reaction to the current error, an 
integral gain (I) reacting on the sum of past errors, and a 
derivative gain (D) in reaction to the rate of change of the 
error. In this paper PID controls are applied to a continuous 
multiplier-accelerator model (the Phillip’s macroeconomic 
business cycle model) and to nonlinear Goodwin ‘s 
macroeconomic growth model [31]. A fuzzy logic controller 
operates is similar to an artificial decision-maker that operates 
in a closed-loop system in real time. Description and 
applications to dynamic macroeconomic models can be found 
in [31]-[32]. Compared to a PID control, the simulation results 
with fuzzy controllers show more efficient stabilization of an 
economy. 

In our studies, specialized MATHEMATICA® packages 
(e.g., Control System Professional, Polynomial Control 
System, and SchematicSolver) are used for analyzing and 
solving the systems symbolically and numerically [33]-[35]. 
These studies also used MATLAB® specialized packages 
(e.g., Simullink and ControlSystem, Fuzzy Logic Tool 2) [36]. 
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